已知点,点为直线上的一个动点.(1)求证:恒为锐角;(2)若四边形为菱形,求的值.
已知函数f(x)=x+sin x. (1)设P,Q是函数f(x)图像上相异的两点,证明:直线PQ的斜率大于0; (2)求实数a的取值范围,使不等式f(x)≥axcos x在上恒成立.
已知函数f(x)=x2-2acos kπ·ln x(k∈N*,a∈R,且a>0). (1)讨论函数f(x)的单调性; (2)若k=2 04,关于x的方程f(x)=2ax有唯一解,求a的值.
已知函数f(x)=|ax-2|+bln x(x>0,实数a,b为常数). (1)若a=1,f(x)在(0,+∞)上是单调增函数,求b的取值范围; (2)若a≥2,b=1,求方程f(x)=在(0,1]上解的个数.
已知函数f(x)=ln x+2x,g(x)=a(x2+x). (1)若a=,求F(x)=f(x)-g(x)的单调区间; (2)若f(x)≤g(x)恒成立,求实数a的取值范围.
已知函数f(x)=x3-ax2-3x. (1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围; (2)若x=3是f(x)的极值点,求f(x)的单调区间.