直三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.(1)求证:直线AB1⊥平面A1BD.(2)求二面角A-A1D-B正弦值的大小.
比较下列各组中两个代数式的大小:⑴x2+3与3x ;⑵已知a,b为正数,且a≠b,比较a3 +b3与a2b+ab2
(本小题满分10分)解不等式:.
如图,圆柱内有一个三棱柱,三棱柱的 底面为圆柱底面的内接三角形,且是圆的直径。(I)证明:平面平面;(II)设,在圆柱内随机选取一点,记该点取自三棱柱内的概率为。(i)当点在圆周上运动时,求的最大值;(ii)如果平面与平面所成的角为。当取最大值时,求的值。
如图,四棱锥P—ABCD的底面是AB=2,BC=的矩形,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD(I)证明:侧面PAB⊥侧面PBC;(II)求侧棱PC与底面ABCD所成的角;(III)求直线AB与平面PCD的距离.
如图,四边形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,若在线段PD上存在点E使得BE⊥CE,求线段AD的取值范围,并求当线段PD上有且只有一个点E使得BE⊥CE时,二面角E—BC—A正切值的大小。