如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动(Ⅰ)求三棱锥E-PAD的体积;(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF
(本小题满分10分)已知直线为曲线在点处的切线,为该曲线的另一条切线,且. 求:(1)求直线的方程;(2)求由直线和轴所围成的三角形的面积.
(本小题满分10分)已知函数() (1)求函数的极大值和极小值; (2)若函数在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
(本小题满分10分)袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球的1分,现在从袋中随机摸出4个球, 求:(1)列出所得分数X的分布列;(2)得分大于6分的概率.
(本小题满分9分)
已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为 (1)求A,ω,φ的值.(2)写出函数f(x)图象的对称中心及单调递增区间. (3)当x∈时,求f(x)的值域.