已知定义在上的函数,其中为常数。(1)若是函数的一个极值点,求的值;(2)若函数在区间上是增函数,求实数的取值范围;(3)若,在处取得最大值,求实数的取值范围。
(本小题满分13分) (本小题满分13分)已知函数. (Ⅰ)求的最小正周期; (Ⅱ)设,求的值域和单调递减区间.
(本小题满分13分) 从5个男生,4个女生中选3人参加课外活动。 (1)求男生甲必须参加的概率。 (2)求男女生至少都有一名的选法有多少种。(注:结果用数字作答)
(本小题共12分)(注意:在试题卷上作答无效) 已知 (1)求的单调区间; (2)设’若存在使得成的取值范围.
(本小题共12分)(注意:在试题卷上作答无效) 已知数列中,,点在直线y = x上,其中n = 1,2,3,…. (1) 令,证明数列是等比数列; (2) 设分别为数列的前n项和,证明数列是等差数列
(本小题共12分)(注意:在试题卷上作答无效) 已知抛物线上一动点P,抛物线内一点A(3,2) ,F为焦点且的最小值为. (1)求抛物线的方程以及使得取最小值时的P点坐标; (2)过(1)中的P点作两条互相垂直的直线与抛物线分别交于C、D两点,直线CD是否过一定点?若是,求出该定点的坐标,若不是,请说明理由.