(本小题满分14分)为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:,(1)当处理量为多少吨时,每吨的平均处理成本最少?(2)若每处理一吨废弃物可得价值为万元的某种产品,同时获得国家补贴万元.当时,判断该项举措能否获利?如果能获利,求出最大利润;如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?
(本小题满分8分)计算: (Ⅰ); (Ⅱ)+.
如图,椭圆的一个 焦点是F(1,0),O为坐标原点. (Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (Ⅱ)设过点F的直线交椭圆于A、B两点,若直线绕点F任意转动,恒有, 求的取值范围.
设过点的直线分别与轴和轴交于两点,点与点关于轴对称,为坐标原点,若且. (Ⅰ)求点的轨迹的方程; (Ⅱ)过的直线与轨迹交于两点,求的取值范围.
如图,已知四棱锥中,是边长为的正三角形,平面平面,四边形是菱形,,是的中点,是的中点. (Ⅰ)求证:平面. (Ⅱ)求二面角的余弦值.
已知椭圆的一个顶点为A(0,-1),焦点在轴上,若右焦点到直线的距离为3. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆与直线相交于不同的两点M、N,问是否存在实数使;若存在求出的值;若不存在说明理由。