在平面直角坐标系中,已知点,动点在轴上的正射影为点,且满足直线.(Ⅰ)求动点M的轨迹C的方程;(Ⅱ)当时,求直线的方程.
已知抛物线,为抛物线的焦点, 为抛物线上的动点,过作抛物线准线的垂线,垂足为.(1)若点与点的连线恰好过点,且,求抛物线方程;(2)设点在轴上,若要使总为锐角,求的取值范围.
已知函数(∈R).(1)若函数在区间上有极小值点,求实数的取值范围;(2)若当时,,求实数的取值范围.
如图,底面为正三角形,面, 面,,设为的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.
设数列的前项积为,且(n∈N*).(1)求,并证明:;(2)设, 求数列的前项和.
在中,角所对的边为,已知 ,.(1)求的值;(2)若的面积为,求的值.