已知抛物线,为抛物线的焦点, 为抛物线上的动点,过作抛物线准线的垂线,垂足为.(1)若点与点的连线恰好过点,且,求抛物线方程;(2)设点在轴上,若要使总为锐角,求的取值范围.
选修4-4:坐标系与参数方程[ (本小题满分10分)己知直线 的参数方程为(t为参数),圆C的参数方程为.(a>0. 为参数),点P是圆C上的任意一点,若点P到直线的距离的最大值为,求a的值。
(选修4-2:矩阵与变换)已知矩阵,试求曲线在矩阵变换下的函数解析式.
(本小题满分10分,几何证明选讲)如图,与圆相切于点,是的中点,过点引圆的割线,与圆相交于点,连结.求证:.
(1)设均为正数,求证:;(2)设数列和的各项均为正数,,两个数列同时满足下列三个条件:①是等比数列;②;③.求数列和的通项公式.
已知函数,其中为自然对数底数.(1)当时,求函数在点处的切线方程;(2)讨论函数的单调性,并写出相应的单调区间;(3)已知,若函数对任意都成立,求的最大值.