已知抛物线,为抛物线的焦点, 为抛物线上的动点,过作抛物线准线的垂线,垂足为.(1)若点与点的连线恰好过点,且,求抛物线方程;(2)设点在轴上,若要使总为锐角,求的取值范围.
在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.圆O的参数方程为,(为参数,)(1)求圆心的极坐标;(2)当为何值时,圆O上的点到直线的最大距离为3.
今有甲、乙两个篮球队进行比赛,比赛采用7局4胜制.假设甲、乙两队在每场比赛中获胜的概率都是.并记需要比赛的场数为ξ.(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列与数学期望.
如图,已知正三棱柱的底面正三角形的边长是2,D是 的中点,直线与侧面所成的角是. (Ⅰ)求二面角的正切值; (Ⅱ)求点到平面的距离.
已知复数,,求复数实部的最值.
求方程ax2+2x+1=0有且只有一个负实数根的充要条件