已知圆方程.(1)若圆与直线相交于M,N两点,且(为坐标原点)求的值;(2)在(1)的条件下,求以为直径的圆的方程.
已知单位向量与的夹角是钝角,当时,的最小值为。(1)若,其中,求的最小值;(2)若满足,求的最大值.
已知,。(Ⅰ)当时,求和;(Ⅱ)若.求的取值范围.
已知焦点在轴上的椭圆,焦距为,长轴长为. (1)求椭圆的标准方程;(2)过点作两条互相垂直的射线,与椭圆交于两点.①证明:点到直线的距离为定值,并求出这个定值; ②求.
已知函数在处取得极值.(1)求实数的值;(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围.
已知数列是等差数列,首项,公差为,且成等比数列.(1)求数列的通项公式; (2)令,求数列的前项和.