如图,三棱柱中,⊥面,,=3,为的中点. (1)求证:;(2)求二面角的余弦值;(3)在侧棱上是否存在点,使得?并证明你的结论.
选修4-4:坐标系与参数方程 已知平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线方程为; 的参数方程为(为参数). (Ⅰ)写出曲线的直角坐标方程和的普通方程; (Ⅱ)设点为曲线上的任意一点,求点 到曲线距离的取值范围.
选修4—1:几何证明选讲如图,四边形内接于⊙,过点作⊙的切线交的延长线于,已知.(Ⅰ)证明:;(Ⅱ)证明:.
已知函数.(Ⅰ)当时,求在区间上的最大值;(Ⅱ)若在区间(1, +∞)上,函数的图象恒在直线下方,求的取值范围.
已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(Ⅰ)求椭圆的方程;(Ⅱ)设为椭圆上一点,若过点的直线与椭圆相交于不同的两点和,满足(为坐标原点),求实数的取值范围.
已知某班学生语文与数学的学业水平测试成绩抽样统计如下表,若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示语文成绩与数学成绩.例如:表中语文成绩为B等级的共有20+18+4=42人.已知x与y均为B等级的概率是0.18.(Ⅰ)求抽取的学生人数;(Ⅱ)设该样本中,语文成绩优秀率是30%,求a,b值;(Ⅲ)已知求语文成绩为A等级的总人数比语文成绩为C等级的总人数少的概率.