如图,平面,是矩形,,点是的中点,点是边上的动点.(Ⅰ)求三棱锥的体积;(Ⅱ)当点为的中点时,试判断与平面的位置关系,并说明理由;(Ⅲ)证明:无论点在边的何处,都有.
已知数列中,且数列的前n项和又设。 (Ⅰ)求证:数列是等比数列; (II)求数列的通项及前n项和 (III)求证:
已知在直角坐标平面XOY中,有一个不在Y轴上的动点P(x,y),到定点F(0,)的距离比它到X轴的距离多,记P点的轨迹为曲线C (I)求曲线C的方程; (II)已知点M在Y轴上,且过点F的直线与曲线C交于A、B两点,若 为正三角形,求M点的坐标与直线的方程。
设函数,已知和为的极值点。 (I)求a和b的值; (II)设,试证恒成立。
某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”. (I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为 ,求的分布列和数学期望; (II)根据频率分布直方图填写下面列联表,并判断是否有95%的把握认为“成绩优秀”与教学方式有关。
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,CE∥AB。 (Ⅰ)求证:CE⊥平面PAD; (Ⅱ)若PA=AB=1,AD=3,且CD与平面PAD所成的角为45°,求二面角B—PE—A的正切值。