如图:长方形所在平面与正所在平面互相垂直,分别为的中点.(Ⅰ)求证:平面;(Ⅱ)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点 的位置,并证明你的结论;若不存在,请说明理由.
已知角A,B,C是△ABC三边a,b,c所对的角,,,,且.(I)若△ABC的面积S=,求b+c的值; (II)求b+c的取值范围.
已知在等差数列{}中,=3,前7项和=28.(I)求数列{}的公差d;(II)若数列{}为等比数列,且,求数列的前n项和.
设正有理数是的一个近似值,令.(Ⅰ)若,求证:;(Ⅱ)比较与哪一个更接近,请说明理由.
在直角坐标系中,已知圆的参数方程(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆的极坐标方程;(Ⅱ)直线,射线与圆的交点为,与直线的交点为,求线段的长.
切线与圆切于点,圆内有一点满足,的平分线交圆于,,延长交圆于,延长交圆于,连接.(Ⅰ)证明://;(Ⅱ)求证:.