如图,已知△ABC三个顶点的坐标分别是A(-2,3),B(-3,-1),C(-1,1)(1)画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转180°后的△A2B2C2,并写出点A2的坐标;(3)直接回答:∠AOB与∠A2OB2有什么关系?
阅读下面的材料,回答问题: 解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0①,解得y1=1,y2=4. 当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2; ∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2. (1)在由原方程得到方程①的过程中,利用 法达到降次的目的,体现了数学的转化思想. (2)解方程:(x2+3x)2+5(x2+3x)-6=0.
如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为E、F. (1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么? (2)如果OE=OF,那么与的大小有什么关系?为什么?
如图,O是正六边形ABCDEF的中心,连接BD、DF、FB, (1)设△BDF的面积为S1,正六边形ABCDEF的面积为S2 ,则S1与S2的数量关系是 ; (2)△ABF通过旋转可与△CDB重合,请指出旋转中心和最小旋转角的度数.
解方程:(1) (2)x2 -4x+1=0
如图,⊙M经过O点,并且⊙M与x轴,y轴分别交于A,B两点,线段OA,OB(OA>OB)的长是方程的两根. (1)求线段OA,OB的长; (2)已知点C是劣弧的中点,连结MC交OA轴于点E. ①判断MC与OA的位置关系,并说明理由; ②求点C的坐标.