如图,边长为4的正方形ABCD与矩形ABEF所在平面互相垂直,M,N分别为AE,BC的中点,AF=3.(I)求证:DA⊥平面ABEF;(Ⅱ)求证:MN∥平面CDFE;(Ⅲ)在线段FE上是否存在一点P,使得AP⊥MN? 若存在,求出FP的长;若不存在,请说明理由.
求函数在区间[1,3]上的极值。
在平面直角坐标系xOy中,曲线C1的参数方程为(为参数)曲线C2的参数方程为(,为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=与C1,C2各有一个交点.当=0时,这两个交点间的距离为2,当=时,这两个交点重合.(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当=时,l与C1,C2的交点分别为A1,B1,当=-时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.
已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>-1,且当x∈[,)时,f(x)≤g(x),求a的取值范围.
在平面直角坐标系中,求过椭圆(为参数)的右焦点且与直线(为参数)平行的直线的普通方程。
设不等式的解集为M.(I)求集合M;(II)若a,b∈M,试比较ab+1与a+b的大小.