如图,在三棱柱中,平面,,, ,分别是,的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面平面;(Ⅲ)求直线与平面所成角的正弦值.
证明一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.
写出下列命题的否命题,并判断原命题及否命题的真假: (1)如果一个三角形的三条边都相等,那么这个三角形的三个角都相等; (2)矩形的对角线互相平分且相等; (3)相似三角形一定是全等三角形.
已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.
指出下列命题中,p是q的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答). (1)在△ABC中,p:∠A=∠B,q:sinA=sinB; (2)对于实数x、y,p:x+y≠8,q:x≠2或y≠6; (3)非空集合A、B中,p:x∈A∪B,q:x∈B; (4)已知x、y∈R,p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0.
把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题、逆否命题. (1)正三角形的三内角相等; (2)全等三角形的面积相等; (3)已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.