已知函数,其中是自然对数的底数.(1)求函数的零点;(2)若对任意均有两个极值点,一个在区间内,另一个在区间外,求的取值范围;(3)已知且函数在上是单调函数,探究函数的单调性.
已知函数f (x)=-ax3+x2+(a-1)x- (x>0),(aÎR). (Ⅰ)当0<a<时,讨论f (x)的单调性; (Ⅱ)若f (x)在区间(a, a+1)上不具有单调性,求正实数a的取值范围.
已知中心在原点O,焦点在x轴上的椭圆E过点(1,),离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)直线x+y+1=0与椭圆E相交于A、B(B在A上方)两点,问是否存在直线l,使l与椭圆相交于C、D(C在D上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.
如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,AB=2,点D1、D分别是棱B1C1、BC的中点. (Ⅰ)求证:A1D1⊥平面BB1C1C; (Ⅱ)求证:AB1∥平面CA1D1; (Ⅲ)求多面体A1B1D1-CAD的体积.
甲、乙两名运动员在一次射击预选赛中,分别射击了4次,成绩如下表(单位:环):
(Ⅰ)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(Ⅱ)现要从中选派一人参加正式比赛,你认为选派哪位运动员参加比较合适?请说明理由.
在等差数列{an}中,Sn为其前n项和,且a5=9,S3=9.(Ⅰ)求数列{an}的通项an;(Ⅱ)若数列{}的前n项和为Tn,求2Tn≥的最小正整数n的值.