已知数列满足,,,是数列 的前项和.(1)若数列为等差数列.(ⅰ)求数列的通项;(ⅱ)若数列满足,数列满足,试比较数列 前项和与前项和的大小;(2)若对任意,恒成立,求实数的取值范围.
(本题满分12分)二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围.
(本题12分)已知函数的图像关于原点对称,并且当时,,试求在上的表达式,并画出它的图像,根据图像写出它的单调区间。
(本题12分)幂函数过点(2,4),求出的解析式并用单调性定义证明在上为增函数。
(本小题12分)如图,、分别是正四棱柱上、下底面的中 心,是的中点,. (Ⅰ)求证:∥平面; (Ⅱ当取何值时,在平面内的射影恰好为的重心?
(本小题满分12分) 如图,在梯形中,∥,,,平面平面,四边形是矩形,,点在线段上.(1)求证:平面BCF⊥平面ACFE;(2)当为何值时,∥平面?证明你的结论;