已知椭圆的离心率为,其左、右焦点分别为,点是椭圆上一点,且,(为坐标原点).(Ⅰ)求椭圆的方程;(Ⅱ)过点且斜率为的动直线交椭圆于两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出的坐标,若不存在,说明理由.
已知: 、、是同一平面内的三个向量,其中=(1,2)⑴若||,且,求的坐标;⑵若||=且与垂直,求与的夹角θ.
等差数列中,已知,(1)求数列的通项公式;(2)若分别为等比数列的第1项和第2项,试求数列的通项公式及前项和.
直线与圆交于、两点,记△的面积为(其中为坐标原点).(1)当,时,求的最大值;(2)当,时,求实数的值;
若,求函数的最大值和最小值;
如图5,在四棱锥中,底面为正方形,平面,,点是的中点.(1)求证://平面;(2)若四面体的体积为,求的长.