已知数列满足,,,是数列的前项和.(1)若数列为等差数列.(ⅰ)求数列的通项;(ⅱ)若数列满足,数列满足,试比较数列 前项和与前项和的大小;(2)若对任意,恒成立,求实数的取值范围.
(文科)已知椭圆的一个顶点为(﹣2,0),焦点在x轴上,且离心率为. (1)求椭圆的标准方程. (2)斜率为1的直线l与椭圆交于A、B两点,O为原点,当△AOB的面积最大时,求直线l的方程.
(理科)椭圆的离心率为,轴被曲线截得的线段长等于的长半轴长。 (Ⅰ)求,的方程; (Ⅱ)设与轴的交点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E. (ⅰ)证明:; (ⅱ)记△MAB,△MDE的面积分别是.问:是否存在直线,使得=?
(文科)已知椭圆的中心在坐标原点,两个顶点在直线x+2y﹣4=0上,F1是椭圆的左焦点. (1)求椭圆的标准方程; (2)设点P是椭圆上的一个动点,求线段PF1的中点M的轨迹方程; (3)若直线l:y=x+m与椭圆交于点A,B两点,求△ABO面积S的最大值及此时直线l的方程.
(理科)在平面直角坐标系中,已知点,,为动点,且直线与直线的斜率之积为. (Ⅰ)求动点的轨迹的方程; (Ⅱ)设过点的直线与曲线相交于不同的两点,.若点在轴上,且,求点的纵坐标的取值范围.
(文科)已知椭圆的一个焦点为,且离心率为.(Ⅰ)求椭圆方程;(Ⅱ)过点且斜率为的直线与椭圆交于两点,点关于轴的对称点为,求△面积的最大值.