已知的三个顶点,,,其外接圆为.(1)若直线过点,且被截得的弦长为2,求直线的方程;(2)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求的半径的取值范围.
已知函数()的最小正周期为.(Ⅰ)求函数的单调增区间;(Ⅱ)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.求在区间上零点的个数.
已知(1)求函数在上的最小值;(2)对一切恒成立,求实数的取值范围;(3)证明:对一切,都有成立.
已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点.(1)求椭圆的方程;(2)求的取值范围.
已知(1)求证:向量与向量不可能平行;(2)若,且,求的值.
已知单调递增的等比数列满足:,且是的等差中项.(1)求数列的通项公式;(2)若,,求使成立的正整数的最小值.