设数列是公比为正数的等比数列,,.(1)求数列的通项公式;(2)设数列是首项为,公差为的等差数列,求数列的前项和.
以直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,并在两种坐标系中取相同的单位长度.已知直线l的极坐标方程为,曲线C的参数方程为(α为参数). (Ⅰ)求直线l的直角坐标方程和曲线C的普通方程; (Ⅱ)若直线l与曲线C交于A、B两点,求线段AB的长
如图,设C为线段AB的中点,BCDE是以BC为一边的正方形,以B为圆心,BD为半径的圆与AB及其延长线相交于点H及K. (Ⅰ)求证:HC·CK=BC2; (Ⅱ)若圆的半径等于2,求AH·AK的值.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若,求在区间上的最大值; (III)设函数,(),试讨论函数与图象交点的个数
如图所示,在中,,,N在y轴上,且,点E在x轴上移动. (Ⅰ)求点M的轨迹方程; (Ⅱ)过点作互相垂直的两条直线,与点M的轨迹交于点A、B,与点M的轨迹交于点C、D,求的最小值.
如图,在四棱锥中,底面,,,,是的中点. (Ⅰ)证明:; (Ⅱ)证明:平面; (Ⅲ)求二面角的正切值