如图,已知是椭圆的右焦点;圆与轴交于两点,其中是椭圆的左焦点.(1)求椭圆的离心率;(2)设圆与轴的正半轴的交点为,点是点关于轴的对称点,试判断直线与圆的位置关系;(3)设直线与圆交于另一点,若的面积为,求椭圆的标准方程.
(本小题满分13分)如图1,在中,,,,、分别为、的中点,连接并延长交于,将沿折起,使平面平面,如图2所示.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值;(3)在线段上是否存在点使得平面?若存在,请指出点的位置;若不存在,说明理由.
(本小题满分13分)根据新修订的《环境空气质量标准》指出空气质量指数在,各类人群可正常活动.某市环保局在2014年对该市进行为期一年的空气质量检测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为,,,,,由此得到样本的空气质量指数频率分布直方图,如图.(1)求的值;(2)根据样本数据,试估计这一年度的空气质量指数的平均值;(3)用这50个样本数据来估计全年的总体数据,将频率视为概率.如果空气质量指数不超过20,就认定空气质量为“最优等级”.从这一年的监测数据中随机抽取2天的数值,其中达到“最优等级”的天数为,求的分布列和数学期望.
(本小题满分13分)已知函数.(1)求函数的最小正周期和函数的单调递增区间;(2)在中,角,,所对的边分别为,,,若,,的面积为,求边长的值.
(本题满分14分)已知椭圆的离心率为,点P(1,)在该椭圆上.(1)求椭圆的标准方程;(2)若直线与圆O:相切,并椭圆交于不同的两点A、B,求△AOB面积S的最大值.
(本题满分13分)已知函数,(a、b为常数).(1)求函数在点(1,)处的切线方程;(2)当函数g(x)在x=2处取得极值-2.求函数的解析式;(3)当时,设,若函数在定义域上存在单调减区间,求实数b的取值范围;