端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量特设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果.(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?
初三年一班全体同学到距学校30千米的游览区,男学生骑自行车,出发1.5小时后,女学生乘客车出发,结果他们同时到达游览区,已知客车的速度是自行车的3倍,求自行车的速度.
先化简,后求值:(1+),其是x=-5。
如图,直线与x轴相交于点,与y轴相交于点.求、两点的坐标;过点作直线与轴相交于,且使,求的面积.
.已知一次函数的图像经过点A(0,2)和点B(-1,1)。求它的解析式;在下面的直角坐标系中画出这条直线。
如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点. (1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法). (2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A,B两点的勾股点的个数. (3)如图2,矩形ABCD中,AB=12cm,BC=4cm,DM=8cm,AN=5cm.动点P从D点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s) ,点H为M,N两点的勾股点,且点H在直线l上. ①当t=4时,求PH的长. ②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).