已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为.(Ⅰ)求点M的轨迹方程;(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆()相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.求△OQR的面积的最大值(其中点O为坐标原点).
已知函数,. (1)求的单调区间; (2)设函数,若存在,对任意的,总有成立,求实数的取值范围.
两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y.统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065. (1)将y表示成x的函数; (2)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。
已知定义域为的函数是奇函数. (1)求的值; (2)判断函数的单调性,并求其值域; (3)解关于的不等式.
已知:且, (1)求的取值范围; (2)求函数的最大值和最小值。
已知函数(为实数, ,). (1)若函数的图象过点,且方程有且只有一个根,求的表达式; (2)在(1)的条件下,当时,是单调函数,求实数的取值范围.