已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,x1,x2是方程x2+4x﹣5=0的两根.(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;(2)若∠ADC=90°,求二次函数的解析式.
当你进入博物馆的展览厅时,你知道站在何处观赏最理想?如图,设墙壁上的展品最高处点P距离地面a米,最低处点Q距离地面b米,观赏者的眼睛点E距离地面m米,当过P、Q、E三点的圆与过点E的水平线相切于点E时,视角∠PEQ最大,站在此处观赏最理想.(1)设点E到墙壁的距离为x米,求a、b、m、x的关系式;(2)当a=2.5,b=2,m=1.6,求:(ⅰ)点E和墙壁距离x;(ⅱ)最大视角∠PEQ的度数.(精确到1度)
图1至图7中的网格图均是20×20的等距网格图(每个小方格的边长均为1个单位长).侦察兵王凯在P点观察区域MNCD内的活动情况.当5个单位长的列车(图中的)以每秒1个单位长的速度在铁路线MN上通过时,列车将阻挡王凯的部分视线,在区域MNCD内形成盲区(不考虑列车的宽度和车厢间的缝隙).设列车车头运行到M点的时刻为0,列车从M点向N点方向运行的时间为t(秒).(1)在区域MNCD内,请你针对图1,图2,图3,图4中列车位于不同位置的情形分别画出相应的盲区,并在盲区内涂上阴影.(2)只考虑在区域ABCD内开成的盲区.设在这个区域内的盲区面积是y(平方单位).①如图5,当5≤t≤10时,请你求出用t表示y的函数关系式;②如图6,当10≤t≤15时,请你求出用t表示y的函数关系式;③如图7,当15≤t≤20时,请你求出用t表示y的函数关系式;④根据①~③中得到的结论,请你简单概括y随t的变化而变化的情况.(3)根据上述研究过程,请你按不同的时段,就列车行驶过程中在区域MNCD内所形成盲区的面积大小的变化情况提出一个综合的猜想(问题(3)是额外加分,加分幅度为1~4分).
如示意图,小华家(点A处)和公路(l)之间竖立着一块30米长且平行于公路的巨型广告牌(DE),广告牌挡住了小华的视线,请在图中画出视点A的盲区,并将盲区的那段公路记BC,一辆以60公里/小时匀速行驶的汽车经过公路BC段的时间为6秒,已知广告牌和公路的距离为35米,求小华家到公路的距离.
如图是某比赛场馆的平面图,根据距离比赛场地的远近和视角的不同,将观赛场地划分成A、B、C三个不同的票价区.其中与场地边缘MN的视角大于或等于45°,并且距场地边缘MN的距离不超过30m的区域划分为A票区,B票区如图所示,剩下的为C票区.(π取3)(1)请你利用尺规作图,在观赛场地中,作出A票区所在的区域(只要作出图形,保留作图痕迹,不要求写作法);(2)如果每个座位所占的平均面积是0.8平方米,请估算A票区有多少个座位.
如图,正五边形ABCD中,点F、G分别是BC、CD的中点,AF与BG相交于H.(1)求证:△ABF≌△BCG;(2)求∠AHG的度数.