已知二次函数.(1)求顶点坐标和对称轴方程;(2)求该函数图象与x标轴的交点坐标;(3)指出x为何值时,;当x为何值时,.
已知x2-2x-2=0,求(x-1)2+(x+3)(x-3)+(x-3)(x-1)的值。
化简求值:[(x+y)(x-y)-(x-y)2+2y(x-y)]÷(-2y),其中x=-,y=2.
分解因式:(x-y)2+4xy
分解因式:2x5-32x;
如图,直线:与直线:相交于点,直线与轴交于点,平行于轴的直线分别交直线、直线于、两点(点在的左侧) ⑴点的坐标为; ⑵如图1,若点在线段上,在轴上是否存在一点,使得为等腰直角三角形,若存在,求出点的坐标;若不存在,说明理由; ⑶如图2.若以点为直角顶点,向下作等腰直角,设与重叠部分的面积为,求与的函数关系式;并注明的取值范围.