如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?
已知关于x的一元二次方程.(1)若此方程有两个不相等的实数根,求实数k的取值范围;(2)已知x=3是此方程的一个根,求方程的另一个根及k的值;
解方程 (1)x(x+2)=5x+10 (2)3x2-6x+1=0
(本题12分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数,并判断线段OG、PG、BP之间的数量关系,并说明理由;(3)当∠1=∠2时,求直线PE的解析式.
(本题10分)已知,点I是△ABC的内心(三角形三个内角平分线的交点),过点B作BP⊥BI交AI的延长线于点P.(1)如图1,若BA=BC,①求证:BP∥AC;②设∠BAC=α(其中α为常数),求∠BCP;(2)如图2,CM、BN为△ABC的角平分线,若BM+CN=6,∠BAC=60°,请你直接写出点P到直线BC的距离的最大值等于___________.
(本题10分)如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.(1)若所用铁栅栏的长为40米,求y与x的函数关系式,并直接写出自变量x的取值范围;(2)在(1)的条件下,求S与x的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?