为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从三个区中抽取6个工厂进行调查.已知区中分别有27,18,9个工厂.(Ⅰ)求从区中应分别抽取的工厂个数;(Ⅱ)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自区的概率.
在中,角、、对的边分别为、、,且(Ⅰ)求的值;(Ⅱ)若,求的面积.
已知点和点.(Ⅰ)求过点且与直线垂直的直线的一般式方程;(Ⅱ)求以线段为直径的圆的标准方程.
已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(Ⅰ)求此几何体的体积的大小;(Ⅱ)求异面直线DE与AB所成角的余弦值;(Ⅲ)求二面角A-ED-B的正弦值.
两仓库分别有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地.已知从仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个.问如何调运,能使总运费最小?总运费的最小值是多少?
已知直线方程为,其中(1)求证:直线恒过定点;(2)当变化时,求点到直线的距离的最大值;(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时的直线方程.