()如图,四棱锥中,平面,底面是平行四边形,,是的中点 (Ⅰ)求证: (Ⅱ)试在线段上确定一点,使,求三棱锥的体积.
已知函数(其中,,)的最大值为2,最小正周期为. (1)求函数的解析式; (2)若函数图象上的两点的横坐标依次为,为坐标原点,求的值.
如图,线段的两个端点、分别分别在轴、轴上滑动,,点是上一点,且,点随线段的运动而变化. (1)求点的轨迹方程; (2)设为点的轨迹的左焦点,为右焦点,过的直线交的轨迹于两点,求的最大值,并求此时直线的方程.
已知函数。 (1)若在处取得极值,求的值; (2)求的单调区间; (3)若且,函数,若对于,总存在使得,求实数的取值范围。
设双曲线的顶点为,该双曲线又与直线交于两点,且(为坐标原点)。 (1)求此双曲线的方程; (2)求
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点. (Ⅰ)求证AM//平面BDE; (Ⅱ)求二面角A-DF-B的大小; (Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.