已知全集为,函数的定义域为集合,集合.(1)求;(2)若,,求实数的取值范围.
如图,已知均在⊙O上,且为⊙O的直径.(1)求的值;(2)若⊙O的半径为,与交于点,且、为弧的三等分点,求的长.
已知函数,(Ⅰ)若,求函数的极值;(Ⅱ)设函数,求函数的单调区间;(Ⅲ)若在区间()上存在一点,使得成立,求的取值范围.
已知椭圆的焦点在轴上,离心率,且经过点. (Ⅰ)求椭圆的标准方程;(Ⅱ)斜率为的直线与椭圆相交于两点,求证:直线与的倾斜角互补.
四棱锥中,底面为平行四边形,侧面底面,为 的中点,已知,(Ⅰ)求证:;(Ⅱ)在上求一点,使平面;(Ⅲ)求三棱锥的体积.
甲、乙两个盒子中各有3个球,其中甲盒中有2个黑球1个白球,乙盒中有1个黑球2个白球,所有球之间只有颜色区别.(Ⅰ)若从甲、乙两个盒子中各取一个球,求取出的2个球颜色相同的概率;(Ⅱ)将这两个盒子中的球混合在一起,从中任取2个, 求取出的2个球中至少有一个黑球的概率.