已知函数f(x)=x3+ax-2,(aR).(l)若f(x)在区间(1,+)上是增函数,求实数a的取值范围;(2)若,且f(x0)=3,求x0的值;(3)若,且在R上是减函数,求实数a的取值范围。
已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(2)若f(x)的最大值为正数,求a的取值范围.
某商场预计全年分批购入每台价值为2 000元的电视机共3 600台.每批都购入x台(x∈N*),且每批均需付运费400元.贮存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.
在△ABC中,三内角A、B、C成等差数列,角B的对边b为1,求证:1<a+c≤2.
集合A={x|x2-5x+4≤0},B={x|x2-2ax+a+2≤0},若BA且B≠,求a的取值范围.
(本小题满分10分)选修4—5:不等式选讲(I)已知都是正实数,求证:;(II)已知都是正实数,求证:.