设函数满足且.(1)求证,并求的取值范围;(2)证明函数在内至少有一个零点;(3)设是函数的两个零点,求的取值范围.
(本小题满分13分)已知函数(其中是自然对数的底数),为导函数。(1)当时,其曲线在点处的切线方程;(2)若时,都有解,求的取值范围;(3)若,试证明:对任意恒成立.
(本小题满分12分)数列的前n项和为,且(1)求数列的通项公式;(2)若数列满足:,求数列的通项公式;(3)令,求数列的 n项和.
(本小题满分12分)已知一个袋子里装有只有颜色不同的6个小球,其中白球2个,黑球4个,现从中随机取球,每次只取一球.(1)若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;(2)若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X次,求随机变量X的分布列与期望.
(本小题满分12分)如图,将边长为2的正六边形ABCDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且(1)证明:平面ABEF平面BCDE;(2)求平面ABC与平面DEF所成的二面角(锐角)的余弦值.
(本小题满分12分)已知函数,且当时,的最小值为2,(1)求的值,并求的单调递增区间;(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.