(本小题满分12分)已知函数,且当时,的最小值为2,(1)求的值,并求的单调递增区间;(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
设函数的最小正周期为(1)求的值;(2)若函数的图像是由的图像向右平移个单位长度得到,求的单调增区间.
已知函数,.(1)求函数的极值;(2)若恒成立,求实数的值;(3)设有两个极值点、(),求实数的取值范围,并证明.
已知点,直线,动点P到点F的距离与到直线的距离相等.(1)求动点P的轨迹C的方程;(2)直线与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.
如图,在四棱锥中,⊥底面,四边形是直角梯形,⊥,∥,,. (1)求证:平面⊥平面; (2)求点C到平面的距离; (3)求PC与平面PAD所成的角的正弦值。
在中,角所对的边分别为,且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.