小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
(本小题满分6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2). (1)在平面直角坐标系中画出△ABC关于轴对称的△A1B1C1; (2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上. ①旋转角为多少度? ②写出点B2的坐标.
(本小题满分6分)为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质揣测.体质揣测的结果分为四个等级:优秀、良好、合格、不合格;根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题: (1)在扇形统计图中,“合格“的百分比为. (2)本次体质抽测中,抽测结果为“不合格“等级的学生有人. (3)若该校九年级有400名学生,估计该校九年级体质为“不合格“等级的学生约有人.
(本小题满分6分)先化简,再求值.,其中,.
已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB ,延长DA,CB相交于点E. (1)如图1,EB=AD,求证:△ABE是等腰直角三角形; (2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.
已知点A(-2,n)在抛物线上. (1)若b=1,c=3,求n的值; (2)若此抛物线经过点B(4,n),且二次函数的最小值是-4,请画出点P(,)的纵坐标随横坐标变化的图象,并说明理由.