已知四边形ABCD和四边形CEFG都是正方形 ,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形ABCD的边长为,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG//BD,BG=BD.①求的度数;②请直接写出正方形CEFG的边长的值.
如图,在ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.
(1)解方程: (2)解不等式组:
(1)计算: (2)化简.
阅读下面材料:解答问题 为解方程 (x2-1)2-5 (x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设 x2-1=y,那么原方程可化为 y2-5y+4=0, 解得y1=1,y2=4.当y=1时,x2-1=1, ∴x2=2, ∴x=±;当y=4时,x2-1=4, ∴x2=5, ∴x=±, 故原方程的解为 x1=,x2=-,x3=,x4=-. 上述解题方法叫做换元法; 请利用换元法解方程:(x 2-x)2 - 4 (x 2-x)-12=0
如图,已知CD是⊙O的直径,点A为CD延长线上一点,BC=AB,∠CAB=30°. (1)求证:AB是⊙O的切线; (2)若⊙O的半径为2,求弧BD的长