某校为了满足学生借阅图书的需求,计划购买一批新书,为此可,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图. 请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其他这四类图书的购买量,求应购买这四类图书各多少本?
如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE:ED,单位:m)
如图,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由.
解不等式组,并把解集在数轴上表示出来.
已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且AB=2. (1)求抛物线的解析式; (2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒 ;设,当t为何值时,s有最小值,并求出最小值。 (3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由。
.某私营服装厂根据2011年市场分析,决定2012年调整服装制作方案,准备每周(按120工时计算)制作西服、休闲服、衬衣共360件,且衬衣至少60件。已知每件服装的收入和所需工时如下表:
设每周制作西服x件,休闲服y件,衬衣z件。 (1)请你分别从件数和工时数两个方面用含有x,y 的代数式表示衬衣的件数z, (2)求y与x之间的函数关系式。 (3)问每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?