我县今年初中的实验考试,采用学生抽签的方式决定自己的考试内容,规定:每位考生先在物理学科三个实验题(题签分别用代码B1、B2、B3表示)中抽取一个,再在化学学科三个实验题(题签分别用代码J1、J2、J3表示)中抽取一个进行实验操作考试.如果你在看不到题签的情况下,分别随机地各抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求你抽到的题签代码的下标(例如“B1”的下表为“1”)均为奇数的概率.
如图,有两个可以自由转动的转盘A、B,转盘A被均匀分成4等份,每份标上1、2、3、4四个数字;转盘B被均匀分成6等份,每份标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下: (1)同时转动转盘A与B; (2)转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,如果所得的积是偶数,那么甲胜;如果所得的积是奇数,那么乙胜. 你认为这样的规则是否公平?请你说明理由;如果不公平,请你设计一个公平的规则,并说明理由.
如图,在平面直角坐标系中,⊙M与x轴交于A、B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为(0,),直线CD的函数解析式为y=-x+5. (1)点D的坐标和BC的长; (2)求点C的坐标和⊙M的半径; (3)求证:CD是⊙M的切线.
如图,已知半圆O的直径AB,将—个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连结AD、BC交于点E.线段BD是否恒等于DE,若是请证明,若不是请说明理由.
一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是. (1)求袋中红球的个数. (2)求从袋中摸出一个球是白球的概率. (3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.
如图,△ABC是⊙O的内接三角形,直径AD=8,∠ABC=∠DAC. (1)求AC的长; (2)求图中阴影部分的面积(结果保留π).