为了把一个长100m宽60m 的游泳池扩建成一个周长为600 m的大型水上游乐场,把游泳池的长增加x m,那么x等于多少时,水上游乐场的面积为20000㎡?如果能,求出x的值;如果不能,请说明理由。
某中学举行“中国梦·我的梦”演讲比赛。志远班的班长和学习委员都想去,于是老师制作了四张标有算式的卡片,背面朝上洗匀后,先由班长抽一张,再由学习委员在余下三张中抽一张。如果两张卡片上的算式都正确,班长去;如果两张卡片上的算式都错误,学习委员去;如果两张卡片上的算式一个正确一处错误,则都放回去,背面朝上洗匀后再抽。这个游戏公平吗?请用树状图或列表的方法,结合概率予以说明。
已知,则,,……已知,求n的值。
钓鱼岛自古以来就是中国领土。中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测。如图,E、F为钓鱼岛东西两端。某日,中国一艘海监船从A点向正北方向巡航,其航线距离钓鱼岛最近距离CF=公里,在A点测得钓鱼岛最西端F在最东端E的东北方向(C、F、E在同一直线上)。求钓鱼岛东西两端的距离。(,,结果精确到0.1)
如图,在平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6),将△BCD沿BD折叠(D点在OC边上),使C点落在DA边的E点上,并将△BAE沿BE折叠,恰好使点A落在BD边的F点上.(1)求BC的长,并求折痕BD所在直线的函数解析式;(2)过点F作FG⊥x轴,垂足为G,FG的中点为H,若抛物线经过B,H, D三点,求抛物线解析式;(3)点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B, D点),过点P作PN⊥BC,分别交BC 和 BD于点N, M,是否存在这样的点P,使如果存在,求出点P的坐标;如果不存在,请说明理由.
如图,已知AB是圆O的直径,BC是圆O的弦,弦ED⊥AB于点F,交BC于点G,过点C作圆O的切线与ED的延长线交于点P.(1)求证:PC=PG;(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;(3)在满足(2)的条件下,已知圆为O的半径为5,若点O到BC的距离为时,求弦ED的长.