如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)(1)求此抛物线的解析式.(2)过点P作CB所在直线的垂线,垂足为R,①求证:PF=PR;②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.
如图,已知AB为⊙O的直径,CD是弦,且ABCD于点E.连接AC、OC、BC.(1)求证:ACO=BCD;(2)若AE=18cm,CD=,求⊙O的面积.
如图,有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米, 求鸡场的长和宽各为多少米.
如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题: (1)画出△ABC关于y轴对称的△A1B1C1; (2)画出△ABC关于原点O对称的△A2B2C2; (3)点C1的坐标是 ;点C2的坐标是 ; (4)试判断:与是否关于x轴对称?(只需写出判断结果) .
已知关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)请选择一个的负整数值,并求出方程的根.
解方程: (1) (2)