某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,根据销售经验,销售单价每提高1元,销售量相应减少10个.(1)设销售单价提高x元(x为正整数),写出每月销售量y(个)与x(元)之间的函数关系式;(2)假设这种篮球每月的销售利润为w元,试写出w与x之间的函数关系式,并通过配方讨论,当销售单价定为多少元时,每月销售这种篮球的利润最大,最大利润为多少元?
阅读下面材料:(1)小乔遇到了这样一个问题:如图1,在Rt△ABC中,∠C=90°,D,E分别为CB,CA边上的点,且AE=BC,BD=CE,BE与AD的交点为P,求∠APE的度数;小乔发现题目中的条件分散,想通过平移变换将分散条件集中,如图2,过点B作BF//AD且BF=AD,连接EF,AF,从而构造出△AEF与△CBE全等,经过推理和计算能够使问题得到解决(如图2).请回答:∠APE的度数为___________________.参考小乔同学思考问题的方法,解决问题:(2)如图3,AB为⊙O的直径,点C在⊙O上,D、E分别为CB,CA上的点,且AE=BC,BD=CE,BE与AD交于点P,在图3中画出符合题意的图形,并求出sin∠APE的值.
已知:如图,Rt△AOB中,∠O=90°,以OA为半径作⊙O,BC切⊙O 于点C,连接AC交OB于点P.(1)求证:BP=BC;(2)若sin∠PAO=,且PC=7,求⊙O的半径.
体育测试时,九年级一名男生,双手扔实心球,已知实心球所经过的路线是某个二次函数图象的一部分,如果球出手处A点距离地面的高度为2m,当球运行的水平距离为6m时,达到最大高度5m的B处(如图),问该男生把实心球扔出多远?(结果保留根号)
甲、乙两位同学玩转盘游戏,游戏规则:将圆盘平均分成三份,分别涂上红,黄,绿三种颜色,两位同学分别转动转盘两次(若压线,重新转).若两次指针指到的颜色相同,则甲获胜;若两次指针指到的颜色是黄绿组合则乙获胜;其余情况则视为平局.(1)请用画树状图的方法,列出所有可能出现的结果;(2)试用概率说明游戏是否公平.
已知:如图,△ABD中,AC⊥BD于C,,E是AB的中点,tanD=2,CE=1,求sin∠ECB和AD的长.