某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应的单件利润如下表所示(其中x为正整数,且1≤x≤10):为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为x的产品时,当天的利润为y万元.(1)求y关于x的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.
某县为了了解2013年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向
(1)该县共调查了 名初中毕业生; (2)将两幅统计图中不完整的部分补充完整; (3)若该县2013年初三毕业生共有4500人,请估计该县今年的初三毕业生中读普通高中的学生人数.
先化简,再求值:,其中x=2.
解不等式组,并把解集在数轴上表示出来.
阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中点坐标为.由勾股定理得,所以A、B两点间的距离公式为. 注:上述公式对A、B在平面直角坐标系中其它位置也成立. 解答下列问题: 如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C. (1)求A、B两点的坐标及C点的坐标; (2)连结AB、AC,求证△ABC为直角三角形; (3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.
如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E. (1)求证:AE=BC; (2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′; (3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.