(本小题满分13分)在等差数列中,,其前项和为,等比数列 的各项均为正数,,公比为,且,.(1)求与;(2)设数列满足,求的前项和.
已知函数(1)求的值;(2)求函数的最小正周期及单调递减区间
已知函数(为常数,且)的图象过点.(1)求实数的值;(2)若函数,试判断函数的奇偶性,并说明理由
已知函数,其中.(Ⅰ)讨论的单调性;(Ⅱ)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;(Ⅲ)若关于的方程有两个正实根,求证:.
已知椭圆的左焦点为,离心率为,点M在椭圆上且位于第一象限,直线被圆截得的线段的长为c,.(Ⅰ)求直线的斜率;(Ⅱ)求椭圆的方程;(Ⅲ)设动点在椭圆上,若直线的斜率大于,求直线(为原点)的斜率的取值范围.
已知数列满足,且成等差数列.(Ⅰ)求的值和的通项公式;(Ⅱ)设,求数列的前项和.