如图,在直三棱柱ABC—A1B1C1中, ,直线B1C与平面ABC成45°角。(1)求证:平面A1B1C⊥平面B1BCC1;(2)求二面角A—B1C—B的余弦值.
已知集合A=, B=,求:(1) (2)
已知点Pn(an,bn)都在直线L:y=2x+2上,P1为直线L与x轴的交点,数列{an}成等差数列,公差为1(n∈N*)。(I)求数列{an},{bn}的通项公式;(II)求证:(n≥3,n∈N*)。
已知函数.(1)若f(x)关于原点对称,求a的值;(2)在(1)下,解关于x的不等式.
(12分)已知等比数列{an}的前n项和为Sn="3" · 2n-3。(1)求a1、a2的值及数列{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn。
(12分)若函数.(1)求函数f(x)的单调递增区间。(2)求在区间[-3,4]上的值域