如图,在直三棱柱ABC—A1B1C1中, ,直线B1C与平面ABC成45°角。(1)求证:平面A1B1C⊥平面B1BCC1;(2)求二面角A—B1C—B的余弦值.
(本小题满分12分)为应对金融危机,刺激消费,某市给市民发放旅游消费卷,由抽样调查预计老、中、青三类市民持有这种消费卷到某旅游景点消费额及其概率如下表:
某天恰好有持有这种消费卷的老年人、中年人、青年人各一人到该旅游景点,(Ⅰ)求这三人消费总额大于1300元的概率;(Ⅱ)设这三人中消费额大于300元的人数为,求的分布列及数学期望。
(本小题满分12分)如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求二面角的余弦值.
(本小题满分14分)设函数的图象经过点.(Ⅰ)求的解析式,并求函数的最小正周期和最值.(Ⅱ)若,其中是面积为的锐角的内角,且,求和的长.
已知函数 (1)若,求实数的取值范围; (2)若在区间[1,2]上恒成立,求实数的取值范围.
若数列的前项和为,点均在函数的图象上 (1)求数列的通项公式; (2)若数列是首项为1,公比为的等比数列,求数列的前项和.