如图,四棱锥的底面为矩形,且,,,,(Ⅰ)平面PAD与平面PAB是否垂直?并说明理由;(Ⅱ)求直线PC与平面ABCD所成角的正弦值.
(本小题共13分)已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,E、F分别是AC和BC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2). (Ⅰ) 试判断翻折后直线AB与平面DEF的位置关系,并说明理由;(Ⅱ) 求二面角B-AC-D的平面角的正切值.
图(1) 图(2)
(本小题共13分)已知函数,在曲线的所有切线中,有且仅有一条切线l与直线垂直.(Ⅰ)求a的值和切线l的方程;(Ⅱ)设曲线上任一点处的切线的倾斜角为,求的取值范围.
(本小题共13分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率.
(本小题满分12分)已知函数.(1)当时,求函数的单调区间和极值;(2)当时,若对任意,均有,求实数的取值范围;(3)若,对任意、,且,试比较与 的大小.
(本小题满分12分)在数列中,.(1)求的值;(2)求数列的通项公式;(3)求的最大值.