如图,四边形为矩形,平面,,平面于点,且点在上.(1)求证:;(2)求四棱锥的体积;(3)设点在线段上,且,试在线段上确定一点,使得平面.
如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.
已知(1)若,求证:(2)设,若,求α,β的值.
如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为矩形,E,F分别为棱AB,PC的中点(1)求证:PE⊥BC;(2)求证:EF∥平面PAD.
在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=bcosA.(1)求证:a=b(2)若sinA=,求sin(C)的值.
已知函数f(x)=alnx++1.(Ⅰ)当a=﹣时,求f(x)在区间[,e]上的最值;(Ⅱ)讨论函数f(x)的单调性;(Ⅲ)当﹣1<a<0时,有f(x)>1+ln(﹣a)恒成立,求a的取值范围.