如图,三棱柱ABC-A1B1C1的侧棱AA1⊥平面ABC,△ABC为正三角形,且侧面AA1C1C是边长为2的正方形,E是的中点,F在棱CC1上。(1)当CF时,求多面体ABCFA1的体积;(2)当点F使得A1F+BF最小时,判断直线AE与A1F是否垂直,并证明的结论。
已知数列满足 (1)证明是等比数列,并求的通项公式; (2)证明:.
设函数,记的解集为,的解集为. (1)求; (2)当时,证明:.
将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线. (1)写出的参数方程; (2)设直线与的交点为,以坐标原点为极点,轴正半轴为极坐标建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.
如图,交圆于、两点,切圆于为上一点且,连接并延长交圆于点,作弦垂直,垂足为. (1)求证:为圆的直径; (2)若,求证:.
已知函数,.证明:
(1)存在唯一,使; (2)存在唯一,使,且对(1)中的.