如图,三棱柱ABC-A1B1C1的侧棱AA1⊥平面ABC,△ABC为正三角形,且侧面AA1C1C是边长为2的正方形,E是的中点,F在棱CC1上。(1)当CF时,求多面体ABCFA1的体积;(2)当点F使得A1F+BF最小时,判断直线AE与A1F是否垂直,并证明的结论。
如图,长方体中,,点E是AB的中点. (1)求三棱锥的体积; (2)证明:; (3)求二面角的正切值.
已知圆C的半径为2,圆心在轴正半轴上,直线与圆C相切 (1)求圆C的方程; (2)过点的直线与圆C交于不同的两点且为时 求:的面积.
已知圆与圆相交于A、B两点. (1)求过A、B两点的直线方程. (2)求过A、B两点且圆心在直线上的圆的方程.
已知点是圆上的点 (1)求的取值范围. (2)若恒成立,求实数的取值范围.
已知直线经过两点(2,1),(6,3) (1)求直线的方程 (2)圆C的圆心在直线上,并且与轴相切于点(2,0), 求圆C的方程