将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C的参数方程; (2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
已知函数,. (1)若且,试讨论的单调性; (2)若对,总使得成立,求实数的取值范围.
设抛物线的焦点为,其准线与轴的交点为,过点的直线交抛物线于两点. (1)若直线的斜率为,求证:; (2)设直线的斜率分别为,求的值.
在数列中,(). (1)求的值; (2)是否存在常数,使得数列是一个等差数列?若存在,求的值及的通项公式;若不存在,请说明理由.
如图,是圆的直径,垂直于圆所在的平面,是圆上的点. (1)求证:平面平面; (2)若,求二面角的余弦值.
已知函数对任意满足,,若当时,(且),且. (1)求实数的值; (2)求函数的值域.