如图,在⊙O中,AB为⊙O的直径,C、D为⊙O上两点,弦AC=,△ACD为等边三角形,CD、AB相交于点E.(1)求∠BAC的度数;(2)求⊙O的半径;(3)求CE的长.
解不等式组 5 x - 3 ⩽ 2 x + 9 3 x > x + 10 2 ,并写出它的所有整数解.
计算: ( 1 2 ) - 1 + ( π + 1 ) 0 -2cos60°+ 9 .
如图,抛物线 y=a x 2 +bx+c 经过 A(-3,0) , B(1,0) , C(0,3) 三点.
(1)求抛物线的函数表达式;
(2)如图1, P 为抛物线上在第二象限内的一点,若 ΔPAC 面积为3,求点 P 的坐标;
(3)如图2, D 为抛物线的顶点,在线段 AD 上是否存在点 M ,使得以 M , A , O 为顶点的三角形与 ΔABC 相似?若存在,求点 M 的坐标;若不存在,请说明理由.
如图,已知 AB 是 ⊙O 的直径, CB⊥AB , D 为圆上一点,且 AD//OC ,连接 CD , AC , BD , AC 与 BD 交于点 M .
(1)求证: CD 为 ⊙O 的切线;
(2)若 CD= 2 AD ,求 CM MA 的值.
某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.
(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?
(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大棚的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?