如图四棱锥中,底面是平行四边形,平面,垂足为,在上且,,,是的中点,四面体的体积为.(1)求二面角的正切值;(2)求直线到平面所成角的正弦值;(3)在棱上是否存在一点,使异面直线与所成的角为,若存在,确定点的位置,若不存在,说明理由.
如图所示,四棱锥的底面是直角梯形,,,,底面,过的平面交于,交于(与不重合). (Ⅰ)求证:; (Ⅱ)如果,求此时的值.
已知数列的前项和为,若(),且. (Ⅰ)求证:数列为等差数列; (Ⅱ)设,数列的前项和为,证明:().
在锐角中,分别为角所对的边,且 (Ⅰ)确定角的大小; (Ⅱ)若,且的面积为,求的值.
选修4-5:不等式选讲 设函数的最小值为. (1)求; (2)已知两个正数满足,求的最小值.
选修4-4:极坐标系与参数方程 极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两坐标系的长度单位相同.已知曲线的极坐标方程为,斜率为的直线交轴于点. (1)求曲线的直角坐标方程,直线的参数方程; (2)若直线与曲线交于两点,求的值.