如图四棱锥中,底面是平行四边形,平面,垂足为,在上且,,,是的中点,四面体的体积为.(1)求二面角的正切值;(2)求直线到平面所成角的正弦值;(3)在棱上是否存在一点,使异面直线与所成的角为,若存在,确定点的位置,若不存在,说明理由.
已知函数. (Ⅰ)求的最小正周期; (Ⅱ)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.
已知函数. (Ⅰ)当时,如果函数仅有一个零点,求实数的取值范围; (Ⅱ)当时,试比较与1的大小; (Ⅲ)求证:.
直线与椭圆交于,两点,已知,,若且椭圆的离心率,又椭圆经过点,为坐标原点. (Ⅰ)求椭圆的方程; (Ⅱ)若直线过椭圆的焦点(为半焦距),求直线的斜率的值; (Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
已知数列和满足:,其中为实数,为正整数. (Ⅰ)对任意实数,证明数列不是等比数列; (Ⅱ)对于给定的实数,试求数列的前项和; (Ⅲ)设,是否存在实数,使得对任意正整数,都有成立? 若存在,求的取值范围;若不存在,说明理由.
已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与相切. (Ⅰ)求圆的方程; (Ⅱ)设直线与圆相交于两点,求实数的取值范围; (Ⅲ)在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由.