设,两个函数,的图像关于直线对称.(1)求实数满足的关系式;(2)当取何值时,函数有且只有一个零点;(3)当时,在上解不等式.
设圆C与两圆(x+)2+y2=4,(x-)2+y2=4中的一个内切,另一个外切. (1)求C的圆心轨迹L的方程; (2)已知点M(,),F(,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-). (1)求双曲线方程; (2)若点M(3,m)在双曲线上,求证:·=0; (3)求△F1MF2的面积.
如图所示,双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别为左、右焦点,双曲线的左支上有一点P,∠F1PF2=,且△PF1F2的面积为2,双曲线的离心率为2,求该双曲线的标准方程.
已知椭圆C:+=1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为. (1)求椭圆C的方程; (2)已知动直线y=k(x+1)与椭圆C相交于A,B两点. ①若线段AB中点的横坐标为-,求斜率k的值; ②已知点M(-,0),求证:·为定值.
已知F1,F2是椭圆C:+=1(a>b>0)的左、右焦点,点P(-,1)在椭圆上,线段PF2与y轴的交点M满足+=0. (1)求椭圆C的方程; (2)椭圆C上任一动点N(x0,y0)关于直线y=2x的对称点为N1(x1,y1),求3x1-4y1的取值范围.