在平面直角坐标系中,已知点,是动点,且的三边所在直线的斜率满足.(1)求点的轨迹的方程;(2)若是轨迹上异于点的一个点,且,直线与交于点,问:是否存在点,使得和的面积满足?若存在,求出点的坐标;若不存在,说明理由.
选修4-4:坐标系与参数方程[(本小题满分10分) 己知直线 的参数方程为(t为参数),圆C的参数方程为.(a>0. 为参数),点P是圆C上的任意一点,若点P到直线的距离的最大值为,求a的值。
.选修4-2:矩阵与变换(本小题满分10分) 已知 ,矩阵所对应的变换 将直线 变换为自身,求a,b的值。
选修4-1:几何证明选讲 如图,0是△ABC的外接圆,AB = AC,延长BC到点D,使得CD = AC,连结AD交O于点E.求证:BE平分ABC
(本小题满分16分)己知函数 (1)若,求函数 的单调递减区间; (2)若关于x的不等式 恒成立,求整数 a的最小值: (3)若 ,正实数 满足 ,证明:
(本小题满分16分)在数列 中,已知 ,为常数. (1)证明: 成等差数列; (2)设 ,求数列 的前n项和 ; (3)当时,数列 中是否存在三项 成等比数列,且也成等比数列?若存在,求出的值;若不存在,说明理由.